欢迎访问文稿网!

数学证明题

范文小馒头 分享 时间: 加入收藏 我要投稿 点赞

数学证明题

第1篇:数学证明题

数学证明题

数学证明题证明:作PF∥BG,交BC于点P ∵GF∥BP,PF∥BG ∴四边形BPFG为平行四边形 ∴BG=PF ∠FPC=∠B=∠FAC 又∵∠1=∠2,CF=CF ∴△CFP≌△CFA ∴FP=AF ∵∠1=∠2,∠1+∠AEC=90°=∠2+∠DFC ∴∠AEC=∠DFC=∠AFE ∴AE=AF 又AF=FP=BG ∴AE=BG 7证明 在△ABC和△ACD中 因为

AB=CD(已知)BC=AD(已知)AC=AC(公共边)所以△ABC≌△ACD(SSS)所以∠BAC=∠DCA(全等三角形的对应角相等)因为∠ABC=∠BCD(已知)所以AB‖CD(内错角相等,两直线平行)所以∠ABC+∠BCD=180度(两直线平行,同旁内角互补)因为∠BAC=∠DCA(已证)所以∠BAC=180°/2=90°(等式性质)所以AB⊥AC(垂直的定义)8,∠ABC=∠BCD 所以AB平行CD 所以,∠CAB+∠ACD=180 证三角形ABC与ACD相似 因为AC是公共边 所以相似比为1 所以全等, 所以,∠CAB=∠ACD=90 证明:连接BD ∵∠ABC=∠BCD ∴AB‖CD ∵AB=CD ∴四边形ABCD是平行四边形 ∵BC=AD ∴平行四边形ABCD是矩形 9 证明:(a+b-c)-4ab =(a+b-c+2ab)(a+b-c-2ab)=[(a+b)-c][(a-b)-c] =(a+b+c)(a+b-c)(a-b+c)(a-b-c)因a、b、c是△ABC的三条边的长 则a+b+c>0, a+b>c,a +c>b,b+c>a 则a+b+c>0,a+b-c>0,a-b+c>0,a-b-c则(a+b+c)(a+b-c)(a-b+c)(a-b-c)则(a+b-c)-4ab10(a+b-c)-4ab(a+b-c)-(2ab)(a+b-c-2ab)(a+b-c+2ab)((a-b)-c)((a+b)-c)(a-b-c)(a-b+c)(a+b-c)(a+b+c)因为 a-(b+c)0(a+b)-c>0 a+b+c>0(因为 三角形 任意两边的和大于第3边)所以 原式证明:原式=(a+b-c+2ab)(a+b-c-2ab)=[(a+b)-c] [(a-b)-c] =(a+b+c)(a+b-c)(a-b+c)(a-b-c)﹤0(上面4个因式,由三角形任意两边之和大于第三边,仅有一个因式(a-b-c)为负值)

第2篇:数学证明题

数学题The mathematics inscribe

在梯形ABCD中,AD∥BC,AC垂直BD,若AD=2,BC=8,BD=6,求(1)对角线AC的 长。(2)梯形的面积。

梯形

解: AC于BD交接点为O 设OC=x,OA=y,OD=z,则BO=6-y,三角形而AOD以AD为底得高h1,三角形BOC以BC为底的高h2.,因为AC垂直BD,AD=2,BC=8,BD=6。故AOD和BOC都为直接三角形,根据面积法得出两个①等式三角形AOD(2h1=yz),②三角形BOC(8h2=(6-z)x).③三角形BDC(6x=8(h1+h2))根据勾股定理求的2个等式,④y^2+z^2=4,⑤x^2+(6-z)^2=64 ,由①②③解得x=4y,通过这个x,y的关系带入④⑤可以解得z=6/5,y==8/5,x=32/5,h1=24/25,h2=96/25 ,故梯形的高位 24/5。则 AC=8.梯形面积为(2+8)*24/5*1/2=24在-44,-43,-42,…0,1,2,3,…2005,2006 这一串连续整数中,前100个数的和是多少?方法一 解:前100个数的和=-(1+2+----------------------+44)+(0+1+2+3+-----------------+55)

=-(1+44)*44/2+(1+55)*55/2=550方法二 解:前100个数的和

已知p[-1,2],点p关于x轴的对称点p1,关于直线y=-1的对称点为p2,关于直线y=3的对称点为p3,关于直线y=a的对称点为p4,分别写出p1,p2,p3,p4的坐标,从中你发现了什么规律?选择题 给出任意个选项,再把正确答案的序号填在括号里,而不是正确答案,但自己首先要算出正确答案,再把正确选项的序号填在括号里。(一般在答题卡是涂

"A","B","C"或"D")例如:x+y=3 2x=y x=(1)y=(2)A1;2 B2;1 C0;0 D无解

要看清楚是不是直接写得数,如果是,就不能写过程,不是直接写得数的要写出过程,初学者过程要求详细,学的时间久些就可以适当简略些。记得要写“解”(特别是解方程),在考试时这样的题目因为解失分很不值,也要尽量不让它失分。

算完再验算一下。直接将得数代入即可。

没有太多规律,可能是图形,也可能是统计图,但是重点还是7个字:审好题,反复检查。应用题在数学上,应用题分两大类:一个是数学应用。另一个是实际应用。数学应用就是指单独的数量关系,构成的题目,没有涉及到真正实量的存在及关系。实际应用也就是有关于数学与生活题目。初中一年级学生刚刚进入少年期,机械记忆力较强,分析能力仍然较差。鉴此,要提高初一年级数学应用题教学效果,务必要提高学生的分析能力。这是每一个初一数学老师值得认真探索的问题。笔者在应用题教学中采用以下分析方法,取得了较好的效果。应用题主要是把正确的答案用不同的方法解决出来,并写出解题过程,多做这样的题目可以让人们的思维变得更好。注意要写答句和单位!

第3篇:数学证明题证明方法

数学证明题证明方法(转)

2011-04-22 21:36:39|分类:|标签: |字号大中小 订阅

2011/04/2

2从命题的题设出发,经过逐步推理,来判断命题的结论是否正确的过程,叫做证明。

要证明一个命题是真命题,就是证明凡符合题设的所有情况,都能得出结论。要证明一个命题是假命题,只需举出一个反例说明命题不能成立。证明一个命题,一般步骤如下:

(1)按照题意画出图形;

(2)分清命题的条件的结论,结合徒刑,在“已知”一项中写出题设,在“求证”一项中写出结论;

(3)在“证明”一项中,写出全部推理过程。

一、直接证明

1、综合法

(1)定义:一般地,利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法.(2)综合法的特点:综合法又叫“顺推证法”或“由因导果法”.它是从已知条件和某些学过的定义、公理、公式、定理等出发,通过推导得出结论.2、分析法

(1)定义:一般地,从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止,这种证明的方法叫做分析法.(2)分析法的特点:分析法又叫“逆推证法”或“执果索因法”.它是要证明结论成立,逐步寻求推证过程中,使每一步成立的充分条件,直到最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止.二、间接证明

反证法

1、定义:一般地,假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立,这样的证明方法叫做反证法.2、反证法的特点:

反证法是间接证明的一种基本方法.它是先假设要证的命题不成立,即结论的反面成立,在已知条件和“假设”这个新条件下,通过逻辑推理,得出与定义、公理、定理、已知条件、临时假设等相矛盾的结论,从而判定结论的反面不能成立,即证明了命题的结论一定是正确的.3、反证法的优点:

对原结论否定的假定的提出,相当于增加了一个已知条件.4反证法主要适用于以下两种情形:

(1)要证的结论与条件之间的联系不明显,直接由条件推出结论的线索不够清晰;

(2)如果从正面证明,需要分成多种情形进行分类讨论,而从反面进行证明,只要研究一种或很少的几种情形

第4篇:离散数学证明题

证明题

1.用等值演算法证明下列等值式:

(1)┐(PQ)(P∨Q)∧┐(P∧Q)

(2)(P∧┐Q)∨(┐P∧Q)(P∨Q)∧┐(P∧Q)

证明:(1)

┐(PQ)

┐((P→Q)∧(Q→P))

┐((┐P∨Q)∧(┐Q∨P))

(P∧┐Q)∨(Q∧┐P)

(P∨Q)∧(P∨┐P)∧(┐Q∨Q)∧(┐P∨┐Q)

(P∨Q)∧┐(P∧Q)

(2)

(P∧┐Q)∨(┐P∧Q)

(P∨┐P)∧(P∨Q)∧(┐Q∨┐P)∧(┐Q∨Q)

(P∨Q)∧┐(P∧Q)

2.构造下列推理的证明:

(1)前提:(PQ)(RS),(QP)R,R

前提:PQ。

(2)前提:Q →P, Q  S , S  M , M∧R前提:结论:P∧Q

(3)前提:P →(Q → R), S → P , Q

结论:S →R(4)前提:(P∨Q)→(R∧S),(S∨M)→ U结论:P →U(5)前提:P →┐Q,┐R∨Q ,R∧┐S

结论:┐P(6)前提:P∨Q,P →R, Q → S结论:R∨S

证明:(1)

① R前提引入

②(QP)R前提引入

③ QP①②析取三段论

④ RS①附加规则

⑤ (PQ)(RS)前提引入

⑥ PQ④⑤拒取式

⑦(PQ)(QP)③⑥合取规则

⑧ PQ⑦置换规则

(2)

① M∧R前提引入

② M①化简规则

③ S  M前提引入

④(S → M)∧(M → S)③置换

⑤ M → S④化简规则

⑥ S② ⑥假言推理

⑦ Q  S前提引入

⑧(S → Q)∧(Q → S)⑦ 置换

⑨ S → Q⑧化简规则

⑩ Q⑥ ⑨假言推理

(11)Q →P前提引入

(12)P

(13)P∧Q

(3)

① S → P

②S

③ P

④ P →(Q → R)

⑤ Q → R

⑥ Q

⑦ R

(4)

① P

② P∨Q

③(P∨Q)→(R∧S)

④ R∧S

⑤ S

⑥ S∨M

⑦(S∨M)→ U

⑧ U

(5)

① P

② P →┐Q

③ ┐Q

④ ┐R∨Q

⑤ ┐R

⑥ R∧┐S

⑦ R

⑧ R∧┐R

(6)⑩(11)假言推理⑩(12)合取前提引入附加前提引入① ②假言推理 前提引入③④ 假言推理前提引入⑤⑥假言推理附加前提引入①附加规则前提引入②③ 假言推理④化简规则⑤附加规则前提引入⑥ ⑦假言推理结论否定引入前提引入① ②假言推理前提引入③④析取三段论前提引入⑥化简规则⑤⑦合取

① ┐(R∨S)结论否定引入

② ┐R∧┐S①置换规则

③ ┐R②化简规则

④ P →R前提引入

⑤ ┐P③④拒取

⑥ ┐S②化简规则

⑦ Q → S前提引入

⑧ ┐Q⑥ ⑦拒取

⑨ ┐P∧┐Q⑤⑧合取

⑩ ┐(P∨Q)⑨置换规则

(11)P∨Q前提引入

(12)┐(P∨Q)∧(P∨Q)⑨11 合取

3.在命题逻辑中构造下列推理的证明:

(1)如果今天是星期六,我们就要到颐和园或圆明园去玩。如果颐和园游人太多,我们就不到颐和园去玩。今天是星期六。颐和园游人太多。所以我们到圆明园玩。

(2)明天是晴天,或是雨天;若明天是晴天,我就去看电影;若我看电影,我就不看书。所以,如果我看书,则明天是雨天。

(3)如果小王是理科学生,他必学好数学;如果小王不是文科生,他必是理科生;小王没学好数学。所以,小王是文科生。

解:(1)首先将命题符号化:

设P: 今天是星期六;Q: 我们到颐和园去玩;R:我们到圆明园去玩;S:颐和园游人多。

前提:P →(Q∨R), S → ┐Q , P , S

结论:R证明:

① ②假言推理

④ P前提引入

⑤ P →(Q ∨ R)前提引入⑥ Q ∨ R④⑤假言推理 ⑦ R③⑥析取三段论

(2)首先将命题符号化:令P:明天是晴天,Q:明天是雨天,R:我看电影,S:我看书。① S → ┐Q前提引入②S前提引入③ ┐Q

前提:P∨Q, P→R, R→┐S

结论: S→Q

证明:

① S

② R→┐S

③┐R

④ P→R

⑤ ┐P

⑥ P∨Q 附加前提引入 前提引入 ①②拒取式 前提引入 ③④拒取式 前提引入

⑦ Q⑤⑥析取三段论

(3)首先将命题符号化:

令P:小王是理科生,Q:小王是文科生,R:小王学好数学。

前提:P→R, ┐Q→P, ┐R

结论:Q

证明:

① P→R

② ┐R

③ ┐P

④ ┐Q→P

⑤ Q

6.证明: 前提引入 前提引入 ①②拒取式 前提引入 ③④拒取式

①A-B=A A∩B=Φ。

②(A-B)-C =(A-C)-(B-C)

证明:①

必要性。假设A∩B≠Φ,必有x属于A∩B,则x属于A同时属于B,即x属于A但是x不属于A-B。与A-B=A矛盾。

充分性。显然A-BA。任取x∈A,则如果x属于B,则x属于A∩B,与A∩B=Φ矛盾。因此x必不属于B,即x属于A-B。从而证明了AA-B。命题得证。②

∵(A-B)-C =(A∩~B)∩~C

= A∩~B∩~C;

(A-C)-(B-C)

=(A∩~C)∩~(B∩~C)

=(A∩~C)∩(~B∪C)

=(A∩~C∩~B)∪(A∩~C∩C)

=(A∩~C∩~B)∪Φ

= A∩~B∩~C.∴(A-B)-C =(A-C)-(B-C)

7.设R是A上的二元关系,试证:R是传递的当且仅当R2R,其中R2表示RR。

(1)设R传递,(x,y)∈R2,t∈A使,∈R(因为R2=R R)

∵R传递 ∴∈R

∴R2 R

(2)设R2R,若,∈R

则∈R2,∵R2 R,∴∈R。即R传递。

8.设A是集合,R1,R2是A上的二元关系,证明:

若R1,R2是自反的和对称的,则R1R2也是自反的和对称的。

证明:

(1)∵ R1,R2是A上的自反关系

∴ IAR1IAR2

∴IAR1R2

∴ R1R2是A上的自反关系

又∵ R1,R2是A上的对称关系

∴ R1R11R2R21

(R1R2)111R1R2R1R2∴ R1R2 是A上的对称关系

第5篇:经典数学证明题

1.AB为边长为1的正五边形边上的点.证明:AB

(25分)2.AB为y1x2上在y轴两侧的点,求过AB的切线与x轴围成面积的最小值.(25分)

3.向量OA与OBOA1OB2,OP(1t)OA,OQtOB,0≤t≤1PQ

1在t0时取得最小值,问当0t0时,夹角的取值范围.(25分)

5,使得sinx,cosx,tanx,cotx为等差数列.(25分)

25.圆内接四边形ABCD,AB=1,BC=2,CD=3,DA=4。求圆半径。

6.已知一无穷等差数列中有3项:13,25,41。求证:2009为数列中一项。4.存不存在0x

7.是否存在实数x使tanx+(根3)与cotx+(根3)为有理数?

8.已知对任意x均有acosx+bcos2x>=-1恒成立,求a+b的最大值

9.某次考试共有333名学生做对了1000道题。做对3道及以下为不及格,6道及以上为优秀。问不及格和优秀的人数哪个多?

15.的整数部分为a,小数部分为b 1求a,b;

2求a2b2ab; 2

bb2bn 3求limn

2n2n16.1x,y为实数,且xy1,求证:对于任意正整数n,xy

122n1

2a,b,c为正实数,求证:abc3,其中x,y,z为a,b,c的一种排列 xyz

17.请写出所有三个数均为质数,且公差为8的等差数列,并证明你的结论

x2y2

18.已知椭圆221,过椭圆左顶点Aa,0的直线L与椭圆交于Q,与y轴交于R,ab

过原点与L平行的直线与椭圆交于P

求证:AQ,AR成等比数列

19.已知sintcost1,设scostisint,求f(s)1ss2sn

20.随机挑选一个三位数I

1求I含有因子5的概率;2求I中恰有两个数码相等的概率

21.四面体ABCD中,ABCD,ACBD,ADBC

1求证:四面体每个面的三角形为锐角三角形;

2设三个面与底面BCD所成的角分别为,,,求证:coscoscos1

222..证明当p,q均为奇数时,曲线yx2px2q与x轴的交点横坐标为无理数

23.设a1,a2,,a2n1均为整数,性质P为: 对a1,a2,,a2n1中任意2n个数,存在一种分法可将其分为两组,每组n个数,使得两组所有元素的和相等

求证:a1,a2,,a2n1全部相等当且仅当a1,a2,,a2n1具有性质P

24.已知a,b,c

都是有理数;

25.(1)一个四面体,证明:至少存在一个顶点,从其出发的三条棱组成一个三角形;

(2)四面体一个顶点处的三个角分别是

二面角; 23,arctan2,求的面和arctan2的面所成的326.求正整数区间m,n(mn)中,不能被3整除的整数之和;

27.已知sincos的取值范围;

28.若limf(x)f(0)1,f(2x)f(x)x,求f(x); x02

29.证明:以原点为中心的面积大于4的矩形中,至少还有两个格点。

ex

30.求f(x)的单调区间及极值.x

31.设正三角形T1边长为a,Tn1是Tn的中点三角形,An为Tn除去Tn1后剩下三个三角形内切圆面积之和.求limnAk1nk.

32.已知某音响设备由五个部件组成,A电视机,B影碟机,C线路,D左声道和E右声道,其中每个部件工作的概率如下图所示.能听到声音,当且仅当A与B中有一工作,C工作,D与E中有一工作;且若D和E同时工作则有立体声效果.

求:(1)能听到立体声效果的概率;

(2)听不到声音的概率.33.(1)求三直线xy60,y

1x,y0所围成三角形上的整点个数; 2

y2x1(2)求方程组yx的整数解个数.2xy60

34.已知A(1,1),△ABC是正三角形,且B、C在双曲线xy1(x0)一支上.

(1)求证B、C关于直线yx对称;

(2)求△ABC的周长.2r0,使得35.对于集合MR,称M为开集,当且仅当P0M,{PR2PP0r}M.判断集合{(x,y)4x2y50}与{(x,y)x0,y0}是否为开集,并证明你的结论.36.求最小正整数n,使得I(

12123i)n为纯虚数,并求出I.

37.已知a、b为非负数,Ma4b4,ab1,求M的最值.

n、si、n38.已知sic为o等差数列,sin、sin、cos为等比数列,求

1cos2cos2的值.

239.求由正整数组成的集合S,使S中的元素之和等于元素之积.

40.随机取多少个整数,才能有0.9以上的概率使得这些数中至少有一个偶数.

41.yx2上一点P(非原点),在P处引切线交x、y轴于Q、R,求PQ

PR.

42.已知f(x)满足:对实数a、b有f(ab)af(b)bf(a),且f(x)1,求证:f(x)恒为零.

(可用以下结论:若limg(x)0,f(x)M,M为一常数,那么lim(f(x)g(x))0)xx

第6篇:初二数学证明题

初二数学证明题

1、如图,AB=AC,∠BAC=90°,BD⊥AE于D,CE⊥AE于E.且BD>CE,证明BD=EC+ED

.解答:证明:∵∠BAC=90°,CE⊥AE,BD⊥AE,∴∠ABD+∠BAD=90°,∠BAD+∠DAC=90°,∠ADB=∠AEC=90°.∴∠ABD=∠DAC.又∵AB=AC,∴△ABD≌△CAE(AAS).∴BD=AE,EC=AD.∵AE=AD+DE,∴BD=EC+ED.2、△ABC是等要直角三角形。∠ACB=90°,AD是BC边上的中线,过C做AD的垂线,交AB于点E,交AD于点F,求证∠ADC=∠BDE

解:作CH⊥AB于H交AD于p,∵在Rt△ABC中AC=CB,∠ACB=90°,∴∠CAB=∠CBA=45°.∴∠HCB=90°-∠CBA=45°=∠CBA.又∵中点D,∴CD=BD.又∵CH⊥AB,∴CH=AH=BH.又∵∠pAH+∠ApH=90°,∠pCF+∠CpF=90°,∠ApH=∠CpF,∴∠pAH=∠pCF.又∵∠ApH=∠CEH,在△ApH与△CEH中

∠pAH=∠ECH,AH=CH,∠pHA=∠EHC,∴△ApH≌△CEH(ASA).∴pH=EH,又∵pC=CH-pH,BE=BH-HE,∴Cp=EB.在△pDC与△EDB中

pC=EB,∠pCD=∠EBD,DC=DB,∴△pDC≌△EDB(SAS).∴∠ADC=∠BDE.2证明:作OE⊥AB于E,OF⊥AC于F,∵∠3=∠4,∴OE=OF.(问题在这里。理由是什么埃我有点不懂)

∵∠1=∠2,∴OB=OC.∴Rt△OBE≌Rt△OCF(HL).∴∠5=∠6.∴∠1+∠5=∠2+∠6.即∠ABC=∠ACB.∴AB=AC.∴△ABC是等腰三角形

过点O作OD⊥AB于D

过点O作OE⊥AC于E

再证Rt△AOD≌Rt△AOE(AAS)

得出OD=OE

就可以再证Rt△DOB≌Rt△EOC(HL)

得出∠ABO=∠ACO

再因为∠OBC=∠OCB

得出∠ABC=∠ABC

得出等腰△ABC

41.E是射线AB的一点,正方形ABCD、正方形DEFG有公共顶点D,问当E在移动时,∠FBH的大小是一个定值吗?并验证

(过F作FM⊥AH于M,△ADE全等于△MEF证好了)

2.三角形ABC,以AB、AC为边作正方形ABMN、正方形ACpQ

1)若DE⊥BC,求证:E是NQ的中点

2)若D是BC的中点,∠BAC=90°,求证:AE⊥NQ

3)若F是Mp的中点,FG⊥BC于G,求证:2FG=BC

3.已知AD是BC边上的高,BE是∠ABC的平分线,EF⊥BC于F,AD与BE交于G

求证:1)AE=AG(这个证好了)2)四边形AEFG是菱形

第7篇:初中数学证明题

1.如图1,△ABC中,AB=AC,∠BAC和∠ACB的平分线相交于点D,∠ADC=130°,求∠BAC的度数.

2.如图,△ABC中,AD平分∠CAB,BD⊥AD,DE∥AC。求证:AE=BE。

.3.如图,△ABC中,AD

平分∠BAC,BP⊥AD于P,AB=5,BP=2,AC=9。求证:∠ABP=2∠ACB。

B 图1 P B C

4.如图1,△ABC中,AB=AC,∠BAC和∠ACB的平分线相交于点D,∠ADC=130°,求∠BAC的度数.

15.点D、E在△ABC的边BC上,AB=AC,AD=AE 求证:BD=CE

6.△ABC中,AB=AC,PB=PC.求证:AD⊥

BC A B D E C

7.已知:如图,BE和CF是△ABC的高线,BE=CF,H是CF、BE的交点.求证:

HB=HC

8 如图,在△ABC中,AB=AC,E为CA延长线上一点,ED⊥BC于D交AB于F.求证:△AEF为等腰三角

形.9.如图,点C为线段AB上一点,△ACM、△CBN是等边三角形,直线AN、MC交于点E,直线BM、CN交于点F。

(1)求证:AN=BM;

(2)求证:△CEF是等边三角形

A

10 如图,△ABC中,D在BC延长线上,且AC=CD,CE是△ACD的中线,CF

平分∠ACB,交AB于F,求证:(1)CE⊥CF;(2)CF∥AD.11.如图:Rt△ABC

中,∠C=90°,∠A=22.5°,DC=BC, DE⊥AB.求证:AE=BE.

12.已知:如图,△BDE是等边三角形,A在BE延长线上,C在BD的延长线上,且AD=AC。求证:DE+DC=AE。

13.已知ΔACF

≌ΔDBE,∠E =∠F,AD = 9cm,BC = 5cm;求AB的长.

第8篇:中考数学证明题

中考数学证明题

O是已知线段AB上的一点,以OB为半径的圆O交AB于点C,以线段AO为直径的半圆圆o于点D,过点B作AB的垂线与AD的延长线交于点E

(1)说明AE切圆o于点D

(2)当点o位于线段AB何处时,△ODC恰好是等边三角形〉?说明理由

答案:一题:显然三角形DOE是等边三角形:

理由:

首先能确定O为圆心

然后在三角形OBD中:BO=OD,再因角B为60度,所以三角形OBD为等边三角形;

同理证明三角形OCE为等边三角形

从而得到:角BOD=角EOC=60度,推出角DOE=60度

再因为OD=OE,三角形DOE为等腰三角形,结合上面角DOE=60度,得出结论:

三角形DOE为等边三角形

第三题没作思考,有事了,改天再解

二题:

要证明三角形ODE为等边三角形,其实还是要证明角DOE=60度,因为我们知道三角形ODE是等腰三角形。

此时,不妨设角ABC=X度,角ACB=Y度,不难发现,X+Y=120度。

此时我们要明确三个等腰三角形:ODE;BOD;OCE

此时在我们在三角形BOD中,由于角OBD=角ODB=X度

从而得出角BOD=180-2X

同理在三角形OCE中得出角EOC=180-2Y

则角BOD+角EOC=180-2X+180-2Y,整理得:360-2(X+Y)

把X+Y=120代入,得120度。

由于角EOC+角BOD=120度,所以角DOE就为60度。

外加三角形DOE本身为等腰三角形,所以三角形DOE为等边三角形!

图片发不上来,看参考资料里的1如图,AB⊥BC于B,EF⊥AC于G,DF⊥AC于D,BC=DF。求证:AC=EF。

2已知AC平分角BAD,CE垂直AB于E,CF垂直AD于F,且BC=CD

(1)求证:△BCE全等△DCF

3.如图所示,过三角形ABC的顶点A分别作两底角角B和角C的平分线的垂线,AD垂直于BD于D,AE垂直于CE于E,求证:ED||BC.

4.

已知,如图,pB、pC分别是△ABC的外角平分线,且相交于点p。

求证:点p在∠A的平分线上。

回答人的补充2010-07-1900:101.在三角形ABC中,角ABC为60度,AD、CE分别平分角BAC角ACB,试猜想,AC、AE、CD有怎么样的数量关系

2.把等边三角形每边三等分,经其向外长出一个边长为原来三分之一的小等边三角形,称为一次生长,如生长三次,得到的多边形面积是原三角形面积的几倍

求证:同一三角形的重心、垂心、三条边的中垂线的交点三点共线。(这条线叫欧拉线)求证:同一三角形的三边的中点、三垂线的垂足、各顶点到垂心的线段的中点这9点共圆。~~(这个圆叫九点圆)

3.证明:对于任意三角形,一定存在两边a、b,满足a比b大于等于1,小于2分之根5加

14.已知△ABC的三条高交于垂心O,其中AB=a,AC=b,∠BAC=α。请用只含a、b、α三个字母的式子表示AO的长(三个字母不一定全部用完,但一定不能用其它字母)。

5.设所求直线为y=kx+b(k,b为常数.k不等于0).则其必过x-y+2=0与x+2y-1=0的交点(-1,1).所以b=k+1,即所求直线为y=kx+k+1(1)过直线x-y+2=0与Y轴的交点(0,2)且垂直于x-y+2=0的直线为y=-x+2(2).直线(2)与直线(1)的交点为A,直线(2)与直线x+2y-1=0的交点为B,则AB的中点为(0,2),由线段中点公式可求k.6.在三角形ABC中,角ABC=60,点p是三角ABC内的一点,使得角ApB=角BpC=角CpA,且pA=8pC=6则pB=2p是矩形ABCD内一点,pA=3pB=4pC=5则pD=3三角形ABC是等腰直角三角形,角C=90O是三角形内一点,O点到三角形各边的距离都等于1,将三角形ABC饶点O顺时针旋转45度得三角形A1B1C1两三角形的公共部分为多边形KLMNpQ,1)证明:三角形AKL三角形BMN三角形CpQ都是等腰直角三角形2)求三角形ABC与三角形A1B1C1公共部分的面积。

已知三角形ABC,a,b,c分别为三边.求证:三角形三边的平方和大于等于16倍的根号3(即:a2+b2+c2大于等于16倍的根号3)

初一几何单元练习题

一.选择题

1.如果α和β是同旁内角,且α=55°,则β等于()

(A)55°(B)125°(C)55°或125°(D)无法确定

2.如图19-2-(2)

AB‖CD若∠2是∠1的2倍,则∠2等于()

(A)60°(B)90°(C)120°(D)150

3.如图19-2-(3)

∠1+∠2=180°,∠3=110°,则∠4度数()

(A)等于∠1(B)110°

(C)70°(D)不能确定

4.如图19-2-(3)

∠1+∠2=180°,∠3=110°,则∠1的度数是()

(A)70°(B)110°

(C)180°-∠2(D)以上都不对

5.如图19-2(5),已知∠1=∠2,若要使∠3=∠4,则需()

(A)∠1=∠2(B)∠2=∠

3(C)∠1=∠4(D)AB‖CD

6.如图19-2-(6),AB‖CD,∠1=∠B,∠2=∠D,则∠BED为()

(A)锐角(B)直角

(C)钝角(D)无法确定

7.若两个角的一边在同一条直线上,另一边相互平行,那么这两个角的关系是()

(A)相等(B)互补(C)相等且互补(D)相等或互补

8.如图19-2-(8)AB‖CD,∠α=()

(A)50°(B)80°(C)85°

答案:1.D2.C3.C4.C5.D6.B7.D8.B

初一几何第二学期期末试题

1.两个角的和与这两角的差互补,则这两个角()

A.一个是锐角,一个是钝角B.都是钝角

C.都是直角D.必有一个直角

2.如果∠1和∠2是邻补角,且∠1>∠2,那么∠2的余角是()

3.下列说法正确的是()

A.一条直线的垂线有且只有一条

B.过射线端点与射线垂直的直线只有一条

C.如果两个角互为补角,那么这两个角一定是邻补角

D.过直线外和直线上的两个已知点,做已知直线的垂线

4.在同一平面内,两条不重合直线的位置关系可能有()

A.平行或相交B.垂直或平行

C.垂直或相交D.平行、垂直或相交

5.不相邻的两个直角,如果它们有一条公共边,那么另一边互相()

A.平行B.垂直

C.在同一条直线上D.或平行、或垂直、或在同一条直线上

答案:1.D2.C3.B4.A5.A回答人的补充2010-07-1900:211.如图所示,一只老鼠沿着长方形逃跑,一只花猫同时从A点朝另一个方向沿着长方形去捕捉,结果在距B点30cm的C点处捉住了老鼠。已知老鼠与猫的速度之比为11:14,求长方形的周长。设周长为X.则A到B的距离为X/2;X/2-30:X/2+30=11:14X=500cm如图,梯形ABCD中,AD平行BC,∠A=2∠C,AD=10cm,BC=25cm,求AB的长解:过点A作AB‖DE。∵AB‖DE,AD‖BC∴四边形ADEB是平信四边形∴AB=DE,AD=BE∵∠DEB是三角形DEC的外角∴∠DEB=∠CDE+∠C∵四边形ADEB是平信四边形∴∠A=∠DEB又∵∠A=2∠C,∠DEB=∠CDE+∠C∴∠CDE+∠C∴DE=CE∵AD=10,BC=25,AD=BE∴CE=15=DE=AB如图:等腰三角形ABCD中,AD平行BC,BD⊥DC,且∠1=∠2,梯形的周长为30CM,求AB、BC的长。因为等腰梯形ABCD,所以角ABC=角C,AB=CD,AD//BC所以角ADB=角2,又角1=角2,所以角1=角2=角ADB,而角ABC=角C=角1+角2且角2=角ADB所以角ADB+角C=90度,所以有角1+角2+角ADB=90度所以角2=30度因此BC=2CD=2AB所以周长为5AB=30所以AB=6,BC=12回答人的补充2010-07-0311:25如图:正方形ABCD的边长为4,G、F分别在DC、CB边上,DG=GC=2,CF=1.求证:∠1=∠2(要两种解法提示一种思路:连接并延长FG交AD的延长线于K)

1.连接并延长FG交AD的延长线于K∠KGD=∠FGC∠GDK=∠GCFBG=CG△CGF≌△DGKGF=GKAB=4BF=3AF=5AB=4+1=5AB=AFAG=AG△AGF≌△AGK∠1=∠

22.延长AC交BC延长线与E∠ADG=∠ECG∠AGD=∠EGCDG=GC△ADG≌△EGF∠1=∠EAD=CEAF=5EF=1+4=5∠2=∠E所以∠1=∠2如图,四边形ABCD是平行四边形,BE平行DF,分别交AC于E、F连接ED、BF求证∠1=∠2

答案:证三角形BFE全等三角形DEF。因为FE=EF,角BEF=90度=角DFE,DF=BE(全等三角形的对应高相等)。所以三角形BFE全等三角形DEF。所以∠1等于∠2(全等三角形对应角相等)

就给这么多吧~~N累~!回答人的补充2010-07-1900:341已知ΔABC,AD是BC边上的中线。E在AB边上,ED平分∠ADB。F在AC边上,FD平分∠ADC。求证:BE+CF>EF。

2已知ΔABC,BD是AC边上的高,CE是AB边上的高。F在BD上,BF=AC。G在CE延长线上,CG=AB。求证:AG=AF,AG⊥AF。

3已知ΔABC,AD是BC边上的高,AD=BD,CE是AB边上的高。AD交CE于H,连接BH。求证:BH=AC,BH⊥AC。

4已知ΔABC,AD是BC边上的中线,AB=2,AC=4,求AD的取值范围。

5已知ΔABC,AB>AC,AD是角平分线,p是AD上任意一点。求证:AB-AC>pB-pC。

6已知ΔABC,AB>AC,AE是外角平分线,p是AE上任意一点。求证:pB+pC>AB+AC。

7已知ΔABC,AB>AC,AD是角平分线。求证:BD>DC。

8已知ΔABD是直角三角形,AB=AD。ΔACE是直角三角形,AC=AE。连接CD,BE。求证:CD=BE,CD⊥BE。

9已知ΔABC,D是AB中点,E是AC中点,连接DE。求证:DE‖BC,2DE=BC。

10已知ΔABC是直角三角形,AB=AC。过A作直线AN,BD⊥AN于D,CE⊥AN于E。求证:DE=BD-CE。

等形2

1已知四边形ABCD,AB=BC,AB⊥BC,DC⊥BC。E在BC边上,BE=CD。AE交BD于F。求证:AE⊥BD。

2已知ΔABC,AB>AC,BD是AC边上的中线,CE⊥BD于E,AF⊥BD延长线于F。求证:BE+BF=2BD。

3已知四边形ABCD,AB‖CD,E在BC上,AE平分∠BAD,DE平分∠ADC,若AB=2,CD=3,求AD。

4已知ΔABC是直角三角形,AC=BC,BE是角平分线,AF⊥BE延长线于F。求证:BE=2AF。

5已知ΔABC,∠ACB=90°,AD是角平分线,CE是AB边上的高,CE交AD于F,FG‖AB交BC于G。求证:CD=BG。

6已知ΔABC,∠ACB=90°,AD是角平分线,CE是AB边上的高,CE交AD于F,FG‖BC交AB于G。求证:AC=AG。

7已知四边形ABCD,AB‖CD,∠D=2∠B,若AD=m,DC=n,求AB。

8已知ΔABC,AC=BC,CD是角平分线,M为CD上一点,AM交BC于E,BM交AC于F。求证:ΔCME≌ΔCMF,AE=BF。

9已知ΔABC,AC=2AB,∠A=2∠C,求证:AB⊥BC。

10已知ΔABC,∠B=60°。AD,CE是角平分线,求证:AE+CD=AC

全等形4

1已知ΔABC是直角三角形,AB=AC,ΔADE是直角三角形,AD=AE,连接CD,BE,M是BE中点,求证:AM⊥CD。

2已知ΔABC,AD,BE是高,AD交BE于H,且BH=AC,求∠ABC。

3已知∠AOB,p为角平分线上一点,pC⊥OA于C,∠OAp+∠OBp=180°,求证:AO+BO=2CO。

4已知ΔABC是直角三角形,AB=AC,M是AC中点,AD⊥BM于D,延长AD交BC于E,连接EM,求证:∠AMB=∠EMC。

5已知ΔABC,AD是角平分线,DE⊥AB于E,DF⊥AC于F,求证:AD⊥EF。

6已知ΔABC,∠B=90°,AD是角平分线,DE⊥AC于E,F在AB上,BF=CE,求证:DF=DC。

7已知ΔABC,∠A与∠C的外角平分线交于p,连接pB,求证:pB平分∠B。

8已知ΔABC,到三边AB,BC,CA的距离相等的点有几个?

9已知四边形ABCD,AD‖BC,AD⊥DC,E为CD中点,连接AE,AE平分∠BAD,求证:AD+BC=AB。

10已知ΔABC,AD是角平分线,BE⊥AD于E,过E作AC的平行线,交AB于F,求证:∠FBE=∠FEB。

221381
领取福利

微信扫码领取福利

微信扫码分享